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Fig. S1. Correlations between the model quality metrics for the input models. In the top-
left panel, the correlation between SphereGrinder of the input structure and the sequence 
identity to the best template is shown. In the remaining panels, pairwise correlations between 
three metrics, SphereGrinder, GDT-HA, and Cα-RMSD, are shown. 44 proteins from 
benchmark set1 are used for the analysis.  
 
  



 
Fig. S2. Side-chain accuracy improvement by refinement, shown for (a) benchmark set1 
and (b) set2. In each panel, χ1 accuracy (measured as % of residues with χ1 deviation from the 
native less than 30 degrees) is shown as solid circles, and χ1+2 accuracy (measured as % of 
residues with both χ1 and χ2 deviation from the native less than 30 degrees) as empty circles, 
respectively; results are compared between the input model (x-axis) and the final refined model 
(y-axis). Solvent exposed residues with relative accessible surface area > 50% are not counted. 
  



 
 
Fig. S3. Convergence of the model quality within multiple repeats of refinement runs. 
Variations in the model quality for 4 repeated runs are shown as error bars in the y-axis (points 
represent the average over 4 runs), compared to the input model quality in the x-axis, reported 
in two metrics, SphereGrinder (left panel) and GDT-HA (right panel).  
  



 
Fig. S4. Blind prediction results in CASP12. (a,b) Scatter plots comparing the model quality 
of the input model to the refined model: (a) 24 targets tested for the refinement category (TR) 
and (b) 20 targets tested for the regular tertiary structure prediction category (TS). For the TR 
category, the model quality range for five cluster representatives is shown as error bars, and the 
best-ranked model (model1) in dots. 4 targets in gray color are those forming heavy homo- or 
hetero-oligomers, or a membrane protein. For the TS category, a model ranked as the best 
before the refinement is selected for the comparison in the x-axis. (c) Examples with remarkable 
blind predictions in CASP12: two targets from the TR category, TR594 (top), TR942 (center), 
and one from the TS category, T0868 (bottom). Native, input (or best ranked before refinement 
for T0868), and refined structures are shown in gray, red, and blue colors, respectively. 
 
 
 
 
 



 
Fig. S5. Examples of refinement failures. (a) TR862, a failure due to native complex 
interactions not considered when refined as a monomer. Refinement of the input model as a 
monomer altered loop conformations and helical orientations to bury a set of exposed 
hydrophobic residues; in the native complex these residues are desolvated through inter-chain 
contacts. (b) TR901, a failure when a protein is larger than 200 residues and has a complex 
topology. (c) TR896, a failure when the input model contains significant register shifts from the 
native structure. In the top panel, the native structures are shown in gray and refined structures 
in rainbow color; on the left side, refined starting from the CASP12 input model (having incorrect 
threading on the template), and on the right side, refined starting from a re-threaded model 
according to PSIPRED (1) prediction. Residues forming (or predicted as) β-strands are shown 
at the bottom following the color of regions in the structures. On the right panel, energy 
landscapes for the refinement runs are shown in two metrics, SphereGrinder (SG) (top) and 
GDT-HA (bottom), when ran on the CASP12 input model (full trajectory as black dots) and on 
the re-threaded model (full trajectory as gray, first iteration as blue, and final iteration as red 
dots).   



 
Fig. S6. Correlation between the model quality metrics for the final models, shown for 44 
proteins in benchmark set1. Thresholds in model accuracy metrics used for the definition of 
“correct fold” (see main text) are shown as dashed lines in each panel. 
  



 
Fig. S7. Supplementary to Fig. 3. a,b) Supplementary to Fig. 3a, distribution of per-target 
improvements over the input models and structural similarity to the input models for the 
methods in Fig. 3a are shown in two metrics, a) SG and b) GDT-HA. Similarity to the input 
model is measured using the input model as reference (closer to 100 is more similar to the input 
model). MD, Relax, BBGauss, and FixedCore produce only small changes in the input models 
(right panels), AbInitio produces equivalent amount of structural variation as the standard 
protocol but more often degrades input model quality. c) Control experiment results with 
evolution stage; figure captions are as explained for the diversification stage in Fig. 3a. 
Strategies starting with “From” (in x-axis) refers to the experiments in which the evolution stage 
was run with a pool of structures generated with a different diversification logic (e.g. “From 
AbInitio” is an evolution stage result but starting from the pool of structures generated by 
“AbInitio” logic). The remaining control experiments starting with “Ctrl” took the output of the 
standard diversification logic (“Standard, Stage1”), and details are explained in the evolution 
stage section of SI Methods.  
  



 

 
Fig. S8. Energy landscapes in other metrics for the selected targets in Fig. 4c: a) GDT-HA 
and b) RMSD. 
 
  



Table S1. List of 44 targets in benchmark set 1. 
Target Used 

for 
para-
meter 
decis-
ion 

Native structure Starting model Best template1) 

Sou-
rce 

Name PDBID Topo-
logy 

nres Expt. 
meth
od2) 

GDT-HA SG Source of the 
input model 

PDB ID Seq. 
Identity 

CAM
EO 

 3wvaA  αβ 170 1.4 49.1 67.7 Robetta 4uuxA 13.5 

 3wz4A  αβ 144 2.2 46.7 66.8 Robetta 4jf8A 16.7 

 4idiA  β 144 1.9 46.0 53.4 Robetta 1wgkA 26.1 

 4ipuA  β 137 1.3 45.8 58.4 Robetta 2qv8A 13.9 

 4ld6A  αβ 117 1.7 54.3 68.0 Robetta 3llrA 31.6 

 4nofA  β 125 1.6 58.6 66.2 Robetta 2ocwA 23.2 

 4oleA  β 122 2.5 40.6 58.3 Robetta 2l0dA 15.6 

 4qprA  αβ 143 1.5 55.8 77.1 Robetta 2vjwA 14.0 

 4u77A  αβ 134 2.0 55.8 87.2 Robetta 1buoA 14.9 

 4uapA  β 152 2.0 45.8 56.9 Robetta 1t2xA 17.1 

 4wxmA  αβ 143 2.3 48.8 77.8 Robetta 1l5yA 18.9 

 4zhbA  α 114 1.3 49.0 76.9 Robetta 4rlvA 20.2 

CAS
P TS 
cate-
gory 

T0540 3mx7A  β 90 1.8 46.1 48.3 FALCON-SWIFT 2kd2A 6.7 

T0552 2l3bA  β 111 NMR 43.8 45.9 FAMS03 1kb9A 25.4 

T0564 2l0cA  β 89 NMR 44.3 49.2 Distill 1jmcA 23.6 

T0572 2kxyA  β 93 NMR 36.9 47.7 QUARK 2qsvA 24.7 

T0579 2ky9A  β 64 NMR 46.1 49.2 MidwayFolding 2qqrB 12.4 

T0604D1 3nlcA  αβ 82 2.1 44.2 59.6 I-Tasser 1qo8D 19.7 

T0612 3o0lA3)  β 88 1.8 58.0 81.4 QUARK 2uxtB 26.4 

T0630 2kytA  αβ 123 NMR 47.7 51.0 gws 3kw0B 20.5 

T0643 3nzlA  α 75 1.2 44.0 65.5 STAT-
PROTEUS 

3dnvB 21.7 

T0669 2ltlA  αβ 109 NMR 48.5 47.4 BhageerathH 2ffmA 16.5 

T0724D1 4fmrA  β 115 2.2 49.5 54.7 Robetta 3t2lA 24.4 

T0743 4hyzA  αβ 114 2.2 49.3 66.7 PconsM 2cw9A 18.1 



CAS
P TR 
cate-
gory 

TR283 4cvhA  αβ 168 2.4 41 57.4 nns 1vpaA 22.6 

TR557 2kyyA y αβ 125 NMR 50 60.8 Robetta 3lmm 29.6 

TR568 3n6yA y β 97 1.5 35 34 Robetta 3cu7B 24.7 

TR569 2kywA y β 79 NMR 53 68.6 Robetta 1ftpB 27.9 

TR574 3nrfA y β 102 2.2 40 66.7 I-Tasser 3ivrB 24.5 

TR624 3nrlA y β 69 1.7 36 52.2 N/A 2zzeA 7.0 

TR663 4exrA y β 152 1.8 49 83.6 N/A 2gu3A 13.0 

TR696 4rt5A y β 100 1.5 50 64.5 Bilab-ENABLE 1lqkB 29.0 

TR705 4ftdA y β 96 1.9 44 49.5 AOBA-server 3s30B 22.9 

TR769 2mq8A  αβ 97 NMR 60 89.7 I-Tasser 2kl8A 25.8 

TR780 4qdyA  β 95 2.7 59 68.2 I-Tasser 3hs0I 26.3 

TR280 4qdyA  β 96 2.7 54 78.4 Robetta 3u4yB 27.1 

TR803 4ogmA  αβ 134 2.2 38 38.4 myprotein-me 3gn9A 20.9 

TR816 5a1qA  α 68 1.6 52 80.1 I-Tasser 3cazA 3.9 

TR822 5fu5A  β 117 1.5 30 48.2 TASSER 2w47A 11.5 

TR827 N/A  α 193 N/A 34 75.1 nns 3pkrA 9.4 

TR828 4z29A  β 84 2.0 50 48.2 I-Tasser 3qx3B 29.8 

TR829 4rgiA  αβ 67 1.7 50 44 QUARK 3k8rA 9.1 

TR854 4rn3A  α 70 2.1 59 76.4 Robetta 2ah5A 31.4 

TR857 2mqcA  β 96 NMR 33 46.9 eThread 2osxA 28.1 

1) Based on sequence similarity to the target sequence. Template protein with highest 
structural similarity can differ. 

2) Resolution shown for crystal structures in Å  
3) Dimeric interface residues 20-41 are trimmed. 

 
  



Table S2. Comparison of the refinement results to the best cherry-picked models by 
other methods in previous rounds of CASP. 

Target ΔSphereGrinder ΔGDT-HA 

Best by 
other 

groups1) 

Current 
work2) 

 

Difference Best by 
other 

groups1) 

Current 
work2) 

Difference 

TR280 18.2 24.5 6.3 12.8 17.0 4.2 

TR283 6.7 10.6 3.8 4.2 6.1 1.9 

TR557 4.2 7.5 3.3 1.8 0.4 -1.4 

TR568 9.8 39.7 29.9 3.7 26.3 22.6 

TR569 19.2 26.3 7.0 7.4 9.8 2.4 

TR574 2.9 26.5 23.5 5.3 22.0 16.7 

TR624 22.5 42.0 19.6 12.6 24.5 11.9 

TR663 3.3 4.9 1.6 8.7 6.3 -2.4 

TR696 17.0 27.0 10.0 8.0 17.0 9.0 

TR705 15.6 37.0 21.4 10.7 24.8 14.1 

TR769 10.3 10.3 0.0 12.7 6.8 -5.9 

TR780 10.0 4.7 -5.3 6.8 2.6 -4.2 

TR803 6.7 13.1 6.3 0.6 6.4 5.8 

TR816 16.2 19.9 3.7 9.0 26.3 17.3 

TR822 7.9 38.6 30.7 8.2 34.0 25.8 

TR827 8.8 20.7 11.9 14.3 26.6 12.3 

TR828 16.5 21.3 4.9 4.2 5.1 0.9 

TR829 32.8 32.1 -0.7 8.2 28.7 20.5 

TR854 7.1 22.9 15.7 7.4 12.8 5.4 

TR857 8.3 2.1 -6.2 7.1 -3.1 -10.2 

Average 12.2 21.6 9.4 7.7 15.0 7.3 

1) Best submissions among all five models generated by all groups other than “Baker” 
2) Best of five cluster representative 

 
  



Table S3. Crystallographic phasing experiment using input and refined models. 

Target LLG, input model LLG, refined models1) 

TR568 67 93 
TR574 24 51 
TR624 42 41 
TR663 6 53 
TR696 20 37 
TR780+TR280 38 78 
TR803 27 26 
TR816 35 172 

TR822 25 61 
TR829 16 34 

1) Log likelihood gain (LLG) among the values from molecular replacement on five models. 
Models with LLG > 60 are highlighted by bold letters. 

  
  



Table S4. List of 40 targets in benchmark set 2. 
PDBID Native structure Starting model Best template1) 

Top
o-

logy 

nres Modeled 
range 

Evaluation 
range 

Expt. 
meth
od2) 

GDT-
HA 

SG RMSD PDB ID Seq. 
Identity 

2mdpA αβ 85 1-85 6-29,41-85 NMR 34.5 64.7 3.26 4x25A 8.1 

2mx7A α 100 277-388 289-388 NMR 37.8 49.5 7.23 1qjtA 23.5 

2mzoA α 93 1-93 6-85 NMR 49.7 74.7 2.58 1eo0A 27.2 

2n12A α 82 58-139 63-80,93-139 NMR 34.6 36.2 11.31 1qeyA 17.1 

2n3dA β 100 37-136 37-136 NMR 40.0 43.5 8.01 3a1yA 16.9 

2n3lA αβ 74 6-79 6-79 NMR 43.9 77.7 4.10 1x4aA 37.6 

2n59A β 100 1-100 1-100 NMR 48.0 79.5 2.40 2xskA 18.9 

2n93A β 130 1-130 1-130 NMR 34.0 63.1 3.76 4qgvA 29.5 

2nanA β 140 22-161 22-161 NMR 47.3 71.1 2.79 2ox8A 22.1 

2nbsA αβ 116 1-116 11-116 NMR 49.5 92.0 2.39 2vimA 29.8 

2ncoA α 84 124-207 124-164,170-207 NMR 44.1 59.0 5.18 1h4bA 20.0 

2rv9A β 130 1-130 1-130 NMR 44.6 74.2 2.76 3le0A 24.5 

2rvaA β 131 1-131 1-131 NMR 46.4 57.3 3.93 3le0A 20.9 

4uwqB β 126 27-152 32-79,90-146 3.28 58.1 76.2 2.83 2oxgB 31.6 

4ybaA α 99 1-99 5-81 1.70 55.2 50.0 5.70 2b5aA 26.0 

4z3uA β 181 1-181 4-174 2.71 43.3 56.3 3.85 5d5nA 18.8 

4zuaA αβ 178 1-178 11-165 2.50 39.4 63.9 4.91 1xjaA 11.8 

4zv5A α 91 2-92 2-92 1.57 31.0 37.4 13.1 2f77X 26.7 

5aozA β 140 405-544 405-539 1.14 44.6 73.0 3.48 1aohB 19.9 

5azxA  β 103 30-132 30-129 1.58 48.7 73.0 3.56 2p9rA 10.7 

5b1rA β 127 228-354 229-306,311-348 1.20 50.0 31.5 7.75 4zesA 17.6 

5c4pA  β 126 1-126 3-94,103-121 1.97 47.5 73.4 3.53 1xqaA 23.8 

5cesA αβ 96 202-297 202-292 2.10 44.8 38.5 10.29 1x7vA 10.1 

5dyqA β 152 1-152 10-140 1.66 48.8 66.8 4.30 5btuA 17.4 



5e46A  β 169 16-184 16-184 1.85 49.8 65.1 6.99 3rt0C 17.6 

5e6fA αβ 152 1-152 2-113,128-145 2.60 48.5 74.2 2.72 1hjrA 15.0 

5eliA β 120 17-136 20-131 3.10 56.2 58.5 4.19 2q87A 27.6 

5f3qA α 193 1-193 2-35,44-193 2.10 32.3 38.0 18.20 3n3wA 16.0 

5fidA  β 137 16-152 18-152 1.81 45.6 58.2 3.38 2i0wA 14.4 

5forA αβ 139 1-139 6-139 2.50 32.8 55.2 4.05 3hv2A 19.1 

5fr7A αβ 138 8-145 8-144 1.95 32.5 59.2 4.34 2xgaA 11.2 

5fvjA αβ 166 1-166 5-160 1.70 37.8 61.5 4.03 1wwzA 14.5 

5g51A αβ 139 260-398 260-398 1.45 43.5 60.8 3.26 4nwr0 10.0 

5ghaE β 75 -8-65  2-63 2.50 52.0 78.2 2.99 1ryjA 27.4 

5gt1A β 165 348-512 360-512 1.85 45.1 37.6 5.09 2b0pA 18.2 

5i2qA α 120 65-184 80-184 1.94 55.0 66.2 2.56 1c7vA 27.3 

5jojA α 97 1-97 8-97 NMR 47.8 73.3 2.89 2amiA 28.8 

5lgmA α 69 16-84 16-84 NMR 35.1 44.2 4.66 2hgcA 16.5 

5m1mA α 155 1-155 2-155 1.50 38.8 78.9 3.17 2w9yA 9.2 

5xgaA αβ 108 8-115 8-115 1.95 40.7 54.8 5.14 3lr4A 18.3 

2) Based on sequence similarity to the target sequence. Template protein with highest 
structural similarity can differ. 

3) Resolution shown for crystal structures in Å  
 
  



Table S5. Decomposition of the energy terms contributing to the discrimination of native-
like structures. Targets for which the energy landscapes significantly differ by the all-atom 
energy functions used are shown here. Energy gap (ΔE) between a relaxed native structure and 
the best scoring non-native structure (SphereGrinder < 0.8) is reported for total energy (ΔE,total), 
contribution to the energy by van der Waals interactions (ΔEvdw), and contribution to the energy 
by Coulombic plus solvation interactions (Δ(ECoulomb + Esolv)). Negative energy gap means better 
discrimination of the native-like conformation against false conformations. 
 
 ΔE,total ΔEvdw Δ(ECoulomb + Esolv) 

 Talaris2013 Ref2015 Δ Talaris2013 Ref2015 Δ Talaris2013 Ref2015 Δ 

4qprA -1 -18 -17 +4 -8 -12 -2 -11 -9 

4wxmA -3 -24 -21 +2 -8 -10 -4 -3 +1 

T0572 +3 -17 -20 +14 -5 -19 -8 -14 -6 

T0579 -4 -16 -12 +5 -5 -10 -6 -9 -3 

T0669 -5 -28 -23 +1 -15 -16 -2 -3 -1 

TR574 -8 -19 -11 -2 -27 -25 -3 +12 +15 

TR816 -3 -20 -17 0 -12 -12 -6 -5 +1 

TR822 -10 -27 -17 -22 -19 +3 +9 +3 -6 

TR827 -5 -27 -22 +13 -17 -30 -8 -2 +6 

  



 
SI Methods 
 
Model quality metrics 
Three model quality metrics used in CASP refinement challenge assessment are used 
throughout the article. RMSD measures the root-mean-squared distance of Cα positions 
between two structures after superposition. Global distance test - high accuracy (GDT-HA) 
counts the percentage of residue Cα coordinates which are correctly positioned in a global 
frame when the entire model is superimposed onto the native structure. A residue is assigned 
as correct if the distance between corresponding Cα atoms in the model and the native stucture 
in the global frame is below thresholds of 0.5, 1.0, 2.0, and 4.0 Å; the fraction of correct residues 
is computed for each threshold and the four values are averaged. SphereGrinder (SG) counts 
the percentage of residues with the correct local context and therefore is insensitive to global 
superposition. Correctness of the local context is measured by computing -- for the residue Cα 
of interest -- the RMSD of all atoms in a 6.0 Å sphere. Two thresholds in local RMSD, 2.0 and 
4.0 Å, are used; the values reported are the average of the two. The correlations between the 
three metrics are reported in Fig. S1 for input models, and in Fig. S6 for final models. Structures 
are assessed as correct folds if two of three criteria are satisfied: RMSD equal or less than 2.5 
Å, GDT-HA equal or higher than 60.0, or SG equal or higher than 80.0.  
 
Benchmark set 
We select sets of targets from CASP [2] and CAMEO [3] based on the criteria that i) the protein 
size is between 60 and 200 amino acids and ii) the best homology model is of low-resolution 
accuracy. Homology model quality is considered as low-resolution if i) GDT-HA is between 30 to 
60 for proteins smaller than 100 residues, and ii) between 30 to 55 for larger proteins; models 
with even lower accuracy are have incorrect topologies and are not considered in this study. For 
the first benchmark set (set1) we applied the criteria on previous CASP rounds (CASP9 to 
CASP11) and also CAMEO rounds from July 2013 to September 2015. A total of 32 targets fall 
into this criteria through the entire refinement category (TR) targets from CASP9 through 
CASP11. Of these, we excluded 11 targets having considerable inter-domain (TR606, TR671, 
TR774, TR228) or inter-subunit interactions (TR517, TR576, TR622, TR698, TR722, TR759, 
TR772), as well as one target likely stabilized by the crystal lattice (TR837). In addition to the 20 
targets selected from CASP TR targets, we added 12 targets from CAMEO and other 12 non-
refinement CASP targets, subject to the same criteria on protein size, starting model quality, 
and biological assembly. Details of targets are listed in Table S1. 8 of these targets were used 
for making decisions on several options (marked in Table S1), including the functional form of 
the restraints and its relative strength in the coarse-grained modeling step, and the number of 
structures to sample in the diversification and evolutionary stages.  
 
For the second benchmark set (set2), we applied the same criteria on CAMEO targets since 
October 2015 to August 2017. 
 
Determining fraction of unreliable residues 
The fraction of residues assigned as unreliable regions is determined as a function of both 
protein size Nres and target difficulty s0: 
 

f(Nres) = min( 1.0, 0.3 + max(0.2, 70.0/Nres ) ) 
g(s0) = min( 0.5, 1.0 – s0/100 ) 

minfrac = f × (g-0.2), maxfrac = f ×g        -- Eq 1 
 



with (estimated) target difficulty s0 [4] in GDT-HA scale; multiplication factor f, a function of target 
size ranging from 0.5 (Nres > 350) to 1.0 (Nres <100); multiplication factor g, a function of target 
difficulty ranging from 0.4 (s0 > 60, close to native) and 0.5 (s0 < 50, distant to native). The 
threshold starts from 2.0 times the lowest 40-percentile residue-level fluctuation, and adjusted 
until the fraction of residues with fluctuation higher than the threshold falls within the range of 
(minfrac,maxfrac). 
 
Evolution stage  
Here we describe the details of components in the evolution stage mentioned in the main text. 
 
Parent selection rule: At the beginning of each iteration, a subset of current members in the pool 
(10 in this study) are selected as seed parents with a priority based on: i) the number of times 
the model was used as a seed and ii) energy values (if the former values are equal). A member 
used less often, or used an equal number of times but with lower energy is selected. 
 
Pool update logic: At the end of each iteration, newly generated structures are first filtered 
based on their mutual structural distance, measured by D = 1 - S-score (with a reference 
deviation [5] of 2.5 Å); S-score [5] is a structural “similarity” measure, hence 1 - S-score returns 
“distance” between two structures ranging from 0 (identical) to 1 (totally different). A structure is 
filtered out if there is any other structure in the newly generated pool having a better energy 
value and structurally similar (D < Dfilter , Dfilter  = 0.2 in this study). This filtered set of newly 
generated models is then compared to the reference pool members for the current iteration. 
Replacement happens between similar structures (D < Dcut) if the new model is more favorable 
in energy than a reference pool member, and also between dissimilar structures (D > Dcut) if the 
new model is dissimilar to any reference pool members but still has a more favorable energy 
than the worst reference pool member [6]. In the pool update stage, the distance threshold Dcut 
is decreased in subsequent iterations [6], decreasing pool diversity as the algorithm proceeds. 
In this study, Dcut is defined as: 
 

Dcut = max( 0.6 λ g’(s0), Dfilter) 

g’(s0) = min(1.0, 1.0 -  (s0 - 40.0)/40.0)   -- Eq. 2 
 
with λ linearly decreasing from 1.0 to 0.5 through the 30th iteration (and kept at 0.5 thereafter). 
g’(s0) is a factor considering input model quality, ranging from 0.0 (very accurate) to 1.0 (very 
inaccurate), with s0 representing (estimated) input model quality in GDT-HA scale. For instance, 
Dcut decreases from 0.6 to 0.3 for very difficult targets (s0 < 40.0), and from 0.3 to 0.2 for 
relatively easier cases with s0 = 60.0.  We took s0 as the actual input model’s GDT-HA 
subtracted by 5.0 if the native is known; however, replacing it to an estimated value from the 
structural convergence in homologs [4] did not degrade the overall result much (EstGlobPenalty 
in Figure S7c). 
 
Global structure deformation factor: When a structure drifts away too much from the input 
structure, objective function E’(x) becomes penalized from the original energy value E(x) by a 
multiplication factor p(stoinit) ranging between 0 and 1: 
 

E’(x) = p(stoinit) E(x), 

p(stoinit) = 1.0 - 0.004 (min(0, stoinit-s0))2 -- Eq 3 
 
Here, the structural similarity between a model and the input structure, stoinit, is measured in a 



GDT-HA scale, and the penalty starts to apply when stoinit < s0. For instance, if s0 is set to 40.0 
(that is, GDT-HA of the input model is estimated as 45), the penalty starts at stoinit < 40.0, which 
starts to significantly differ from identity (< 0.95) at stoinit < 34.0. This factor ensures that the 
global search will focus on conformational space sharing the same topology with the input 
structure, not on completely different topologies. 
 
Control experiments for the evolution stage: In the evolution stage, seven control experiments 
are tested, the names of which are listed at the bottom panel of Figure S7c. NoCSA eliminates 
distance annealing logic by fixing λ factor in Eq 2 to a constant of 0.5. SimplePoolControl 
replaces the priority rule for seed parent selection to an energy-weighted stochastic selection 
(also called the roulette-wheel algorithm) [7]:  
 

Priority for i = 
exp Ei −Emin( ) 0.2 Emax −Emin( )( )

Z
, 

Z = exp Ei −Emin( ) 0.2 Emax −Emin( )( )i∑      -- Eq 4, 

 
Npool=10 uses only 10 structures for the pool size throughout (standard is 50). NoCrossover 
and NoMutation eliminate the crossover and mutation operations, while keeping the total 
number of models generated at each iteration the same as standard at 120. NoIteration 
generates 6,000 models from the initial structural pool rather than over 50 iterations. 
EstGlobalPenalty replaces the s0 in Eq 2 and Eq 3 with an estimate of the starting model quality 
based on the structural variations from templates [4] adjusted into GDT-HA scale (which was 
given as the input model’s GDT-HA minus 5). 
 
Update iteration: During the iteration process, a regular iteration is replaced by a special 
iteration, update iteration, at which reliable regions and restraints are updated according to 
structural variations in the current population, followed by generation of 300 models following 
application of mutation operations to the top 10 models in the current population. The purpose 
of this special iteration is: a) to adapt the restraint set to the structure at the current iteration, 
and b) to introduce additional diversity through mutation operations. This special iteration occurs 
if more than 90% of members have served as seed parents, which generally happens at around 
15-25 iterations.  
 
Restraints used in the protocol  
In the coarse-grained sampling in HybridizeMover, distance restraints are applied to residue Cβ 
pairs for those within distance d’ in the input structure, where d’ is a threshold of amino-acid-
pair-specific Cβ distances (Cα for GLY) for the interacting residue pairs observed in general 
natural proteins [8]. A reasonable range of structural change is allowed to the input structure 
(even for a reliable part) rather than strictly preserving it: a flat-bottomed bounded function [9] is 
applied to the residue Cβ distances that begins to penalize if it gets larger than a reference 
distance of d’+2.0 Å (instead of the distance from input structure). Weight on each residue-pair 
restraint is determined depending on the purpose of the modeling: for restrained_sampling in 
diversification stage, a weight of 1.0 kcal/molÅ2 is equally applied to all residue pairs. For 
permissive_sampling in the diversification stage, weights wij (in kcal/molÅ2) are determined by 
the corresponding residue-level fluctuation δi: 
 

wij =min 1, pij p0( ) , 



pij =
p δi( ) p δ j( )
p δi( ) p δ j( )i, j∑

, p δi( ) = exp −k δi δ0( )( )    -- Eq 5 

 
Here, δ0 is 30th percentile of the largest fluctuation, p0 is 30th percentile of the largest pij, and k 
= 0.5. wij generally drops to 0 for a pair of residues including any residue from unreliable 
regions.  
 
At the beginning of first and update iteration of the evolution stage (see above in the Evolution 
stage section), residue pair weights are re-learned from the current structural pool by measuring 
the distance deviations in the current structures from the input structure: 
 

wij =
1
n

1
1+ dij,k − dij,0( ) σ( )

2
k
∑     -- Eq 6 

 
Here, dij,k is the Cβ distance of residue i,j in the k-th structure in the population, dij,0 is the 
corresponding distance in the input structure, σ = 1.0, and n is the number of structures. 
Residue pairs showing greater deviations from the input structure have lower weight thus are 
allowed to move further in sampling with smaller penalties. Note that all the parameters in Eq 5 
and 6 are arbitrarily assigned and could be further optimized.  
 
Representative model selection by structural averaging 
The basic concept of structural averaging simulation trajectory for the selection of a single 
representative model is explained elsewhere [10]; here we describe methodological differences 
from the previous studies. In contrast to conformational ensemble generated by restraining to a 
reference structure (as in previous studies), conformations produced by an iterative 
discontinuous search in this study may contain large structural variations. Therefore, we take a 
subset of the trajectory for structural averaging around the best scoring model (reference model) 
having sufficient structural similarity. Structural similarity threshold to the reference model is 
dynamically determined to get the optimal balance between the number of structures averaged 
and overall structural variation in the subset trajectory; initially set to S-score of 0.7, and is 
decreased by 0.1 until more than 20 similar conformations are found in the entire trajectory. 
Once the subset trajectory is collected, local fluctuations in residue Cα positions are measured, 
and structurally averaged only for the backbone atoms of the residues with Cα fluctuation less 
than 2.0 Å; for the remaining residues (with fluctuation greater than 2.0 Å) backbone coordinates 
are brought from the reference model. Side-chain optimization and minimization are followed 
with strong harmonic restraints (10 kcal/mol Å2) on the backbone coordinates.  
 
Computational cost 
The majority of the computational cost is used for running mutation or crossover operations 
within HybridizeMover. Each mutation or crossover operator (including both coarse-grained and 
all-atom modeling) takes about 4 minutes for a protein with length of 100 residues (using single 
Intel E5-2650 core at 2.0GHz). Running the entire diversification and evolution stages for a 
single target requires approximately 10,000 such operations, or about 700 CPU hours, which 
translates into ~12 hours running in parallel using 64 cores, for a 100-residue protein.  
 
CASP12 targets and protocol   



Blind predictions with the protocol are made for the targets from two categories in CASP12. In 
the refinement category (TR) the best server model is selected as the starting model by the 
organizers and asked for further refinement. To decide whether to apply the protocol reported in 
this study, we used the rule for the input structure quality as described in the Benchmark section 
above, but extended the protein size limit to 400 residues, and also removed the condition on 
biological units; this was to evaluate the method for the cases more challenging than the 
benchmark targets. For the remaining targets, a high-resolution protocol is applied running 
mutation operations focusing on the unreliable regions (results not reported in this paper). 24 of 
42 TR targets in CASP12 were tested with the protocol (the remaining with the high-resolution 
protocol) and submitted by the group name “BAKER”. 
 
According to the assessment, at least 12 of these 24 proteins refined by the protocol form 
hetero- or homo-oligomers; of these, 3 oligomers with large oligomeric contacts (TR862 and 
TR884, TR875 native not deposited yet but likely to have strong dimer interface) and 1 
transmembrane protein (TR945), were clearly not suitable to refine by the protocol (colored gray 
in Figure S4a), i.e. the native monomeric structure may not have the lowest energy. Modeling 
conditions for the remaining 20 cases were also quite challenging compared to the benchmark 
targets; 3 had native conformation too distant from the starting model to be refined (starting 
GDTHA <= 30 and starting SG <= 40, TR869, TR870, TR898), and 5 were large proteins 
(TR694 263 residues, TR901 223 residues, TR905 242 residues, TR928 381 residues, TR942 
387 residues).  
 
In the tertiary structure prediction category (TS), we tested a fully automated, simplified version 
of the protocol at the final refinement stage of the homology modeling pipeline on the Robetta 
server, and submitted the resulting model as one of the models for group name “BAKER-
ROSETTASERVER”. We applied the protocol if the expected homology model quality [4] was 
not greater than 0.6 and the protein length was not greater than 200 residues. Among 57 
domains that fall into the template-based modeling category (TBM), this protocol was applied to 
20 domains, but excluding T0896-D1 from the analysis for which the models sampled had a 
completely different fold from the native (due to incorrect template selection). There are two 
main changes in the protocol for the TS category introduced for efficiency. Instead of running 
the diversification stage on a single input structure, models generated by different templates or 
from de novo models in preceding stages in the server pipeline were clustered and served as 
the starting population of the evolution stage; these structures generally had more diversity than 
those generated by the diversification stage in the standard protocol. The evolution stage was 
also simplified to finish the whole process within submission deadline, by running 30 iterations 
and generating 60 structures per iteration which uses only 30% of computation time required for 
the standard protocol.  
 
Molecular replacement  
Phaser [11] 2.7.1 version in the Phenix software suite [12] version dev-1616 was used for 
testing crystallographic molecular replacement (MR). A single input model before refinement 
and 5 refined models were tested for MR suitability. Initial model accuracy required for Phaser is 
estimated by setting RMSD=1.2 Å uniformly, and B-factors were uniformly set to 30. MR_RNP 
mode was applied to the model structure superimposed into the native crystal coordinate for the 
cases with single asymmetric unit (ASU). If more than one ASU exist, MR_AUTO mode is run 
with the correct number of asymmetric units assigned. 11 targets were selected from a total of 
20 TR targets (listed in Table 3), excluding 4 cases forming a multi-domain protein for which a 
full-length high quality homology model is available at any other domain, and 5 cases for which 
crystallographic diffraction data are not available, such as structures determined by NMR. Of 



these 11 targets tested, TR780 and TR280 are separate domains combined to form a full chain, 
hence 5 models from each domain are selected and combined (a total of 25 combinations) for 
MR on the whole protein and reported as a single target, instead of testing and reporting 
individually.  
 
Instructions to run the refinement pipeline 
Running the pipeline requires a compiled version of the Rosetta suite release version 3.9 or 
later. The overall iterative process is carried out by a master python script, which manages the 
system calls of a series of Rosetta executables, such as the Rosetta hybridization mover 
through an xml script and other Rosetta public apps for tasks such as model selection, 
clustering, and structural averaging. 
 
The whole package containing the master python script and various files required for the 
pipeline is available in the Rosetta repository. Detailed instructions can be found in the Rosetta 
documentation webpage: 
 
https://www.rosettacommons.org/docs/latest/IterativeHybridize 
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